514 research outputs found

    A two step algorithm for learning from unspecific reinforcement

    Get PDF
    We study a simple learning model based on the Hebb rule to cope with "delayed", unspecific reinforcement. In spite of the unspecific nature of the information-feedback, convergence to asymptotically perfect generalization is observed, with a rate depending, however, in a non- universal way on learning parameters. Asymptotic convergence can be as fast as that of Hebbian learning, but may be slower. Moreover, for a certain range of parameter settings, it depends on initial conditions whether the system can reach the regime of asymptotically perfect generalization, or rather approaches a stationary state of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic variant of the algorithm adde

    Secure exchange of information by synchronization of neural networks

    Full text link
    A connection between the theory of neural networks and cryptography is presented. A new phenomenon, namely synchronization of neural networks is leading to a new method of exchange of secret messages. Numerical simulations show that two artificial networks being trained by Hebbian learning rule on their mutual outputs develop an antiparallel state of their synaptic weights. The synchronized weights are used to construct an ephemeral key exchange protocol for a secure transmission of secret data. It is shown that an opponent who knows the protocol and all details of any transmission of the data has no chance to decrypt the secret message, since tracking the weights is a hard problem compared to synchronization. The complexity of the generation of the secure channel is linear with the size of the network.Comment: 11 pages, 5 figure

    On-Line Learning with Restricted Training Sets: An Exactly Solvable Case

    Full text link
    We solve the dynamics of on-line Hebbian learning in large perceptrons exactly, for the regime where the size of the training set scales linearly with the number of inputs. We consider both noiseless and noisy teachers. Our calculation cannot be extended to non-Hebbian rules, but the solution provides a convenient and welcome benchmark with which to test more general and advanced theories for solving the dynamics of learning with restricted training sets.Comment: 19 pages, eps figures included, uses epsfig macr

    Training a perceptron in a discrete weight space

    Full text link
    On-line and batch learning of a perceptron in a discrete weight space, where each weight can take 2L+12 L+1 different values, are examined analytically and numerically. The learning algorithm is based on the training of the continuous perceptron and prediction following the clipped weights. The learning is described by a new set of order parameters, composed of the overlaps between the teacher and the continuous/clipped students. Different scenarios are examined among them on-line learning with discrete/continuous transfer functions and off-line Hebb learning. The generalization error of the clipped weights decays asymptotically as exp(−Kα2)exp(-K \alpha^2)/exp(−e∣λ∣α)exp(-e^{|\lambda| \alpha}) in the case of on-line learning with binary/continuous activation functions, respectively, where α\alpha is the number of examples divided by N, the size of the input vector and KK is a positive constant that decays linearly with 1/L. For finite NN and LL, a perfect agreement between the discrete student and the teacher is obtained for α∝Lln⁥(NL)\alpha \propto \sqrt{L \ln(NL)}. A crossover to the generalization error ∝1/α\propto 1/\alpha, characterized continuous weights with binary output, is obtained for synaptic depth L>O(N)L > O(\sqrt{N}).Comment: 10 pages, 5 figs., submitted to PR

    Storage capacity of correlated perceptrons

    Full text link
    We consider an ensemble of KK single-layer perceptrons exposed to random inputs and investigate the conditions under which the couplings of these perceptrons can be chosen such that prescribed correlations between the outputs occur. A general formalism is introduced using a multi-perceptron costfunction that allows to determine the maximal number of random inputs as a function of the desired values of the correlations. Replica-symmetric results for K=2K=2 and K=3K=3 are compared with properties of two-layer networks of tree-structure and fixed Boolean function between hidden units and output. The results show which correlations in the hidden layer of multi-layer neural networks are crucial for the value of the storage capacity.Comment: 16 pages, Latex2

    Multilayer neural networks with extensively many hidden units

    Full text link
    The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter the storage capacity if found to scale with the logarithm of the number of implementable Boolean functions. The generalization behaviour is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.Comment: 4 pages, 2 figure

    Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions

    Full text link
    We investigate the influence of step edge diffusion (SED) and desorption on Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the solid-on-solid (SOS) model. Based on these investigations we propose two strategies to optimize MBE growth. The strategies are applicable in different growth regimes: During layer-by-layer growth one can exploit the presence of desorption in order to achieve smooth surfaces. By additional short high flux pulses of particles one can increase the growth rate and assist layer-by-layer growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can be used to control size and shape of the three-dimensional structures. By controlled reduction of the flux with time we achieve a fast coarsening together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    Ecofeminism in the 21st Century

    Get PDF
    This paper considers the influence of ecofeminism on policy concerning gender (in)equality and the environment during the past 20 years. It reviews the broad contours of the ecofeminist debate before focusing on the social construction interpretation of women's relationship with the environment. It will argue that there have been substantial policy shifts in Europe and the UK in both the environmental and equalities fields, and that this is in part a result of lobbying at a range of scales by groups informed by ecofeminist debates. Nevertheless, the paper cautions that these shifts are largely incremental and operate within existing structures, which inevitably limit their capacity to create change. As policy addresses some of the concerns highlighted by ecofeminism, academic discourse and grass roots activity have been moving on to address other issues, and the paper concludes with a brief consideration of contemporary trajectories of ecofeminism and campaigning on issues that link women's, feminist and environment concerns

    Breaking the Bluetooth Pairing – The Fixed Coordinate Invalid Curve Attack

    Get PDF
    Bluetooth is a widely deployed standard for wireless communications between mobile devices. It uses authenticated Elliptic Curve Diffie-Hellman for its key exchange. In this paper we show that the authentication provided by the Bluetooth pairing protocols is insufficient and does not provide the promised MitM protection. We present a new attack that modifies the y-coordinates of the public keys (while preserving the x-coordinates). The attack compromises the encryption keys of all of the current Bluetooth authenticated pairing protocols, provided both paired devices are vulnerable. Specifically, it successfully compromises the encryption keys of 50% of the Bluetooth pairing attempts, while in the other 50% the pairing of the victims is terminated. The affected vendors have been informed and patched their products accordingly, and the Bluetooth specification had been modified to address the new attack. We named our new attack the “Fixed Coordinate Invalid Curve Attack”. Unlike the well known “Invalid Curve Attack” of Biehl et. al. which recovers the private key by sending multiple specially crafted points to the victim, our attack is a MitM attack which modifies the public keys in a way that lets the attacker deduce the shared secret
    • 

    corecore